A Global Assessment of Groundwater Recharge Response to Infiltration Variability at Monthly to Decadal Timescales

Author:

Moeck Christian1ORCID,Collenteur Raoul A.1ORCID,Berghuijs Wouter R.2ORCID,Luijendijk Elco3ORCID,Gurdak Jason J.4

Affiliation:

1. Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

2. Department of Earth Sciences Free University Amsterdam Amsterdam The Netherlands

3. Department of Earth Science University of Bergen Bergen Norway

4. San Francisco State University San Francisco CA USA

Abstract

AbstractPredictions of groundwater fluctuations in space and time are important for sustainable water resource management. Infiltration variability on monthly to decadal timescales leads to fluctuations in the water tables and thus groundwater resources. However, connections between global‐scale climate variability and infiltration patterns and groundwater are often poorly understood because the relationships between groundwater conditions and infiltration tend to be highly nonlinear. In addition, understanding is further hampered because many groundwater records are incomplete and groundwater tables are often anthropogenically influenced, which makes identifying the effects of infiltration variability difficult. Previous studies that have evaluated how infiltration variability controls groundwater are based on a limited number of point measurements. Here, we present a global assessment of how infiltration variability is expected to affect groundwater tables. We use an analytical solution derived from Richards' equation to model water level responses to idealized periodic infiltration variability with periods that range from months to decades, to approximate both the effects of short‐term and long‐term climate variability and thus infiltration patterns. Our global‐scale assessment reveals why infiltration variability would lead to periodicity in groundwater recharge in particular regions. The vadose zone strongly dampens short‐term (seasonal and shorter) variations in infiltration fluxes throughout most of Earth's land surface, while infiltration cycles exceeding 1 year would yield transient recharge, except in more arid regions. Our results may help forecasting long‐term groundwater tables and could support improving groundwater resource management.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3