Discharge‐Mediated Temperature Management in a Large, Regulated River, With Implications for Management of Endangered Fish

Author:

Michel C. J.12ORCID,Daniels M. E.12ORCID,Danner E. M.2ORCID

Affiliation:

1. Institute of Marine Sciences University of California, Santa Cruz Santa Cruz CA USA

2. Southwest Fisheries Science Center ‐ Fisheries Ecology Division National Marine Fisheries Service National Oceanic and Atmospheric Administration Santa Cruz CA USA

Abstract

AbstractFor large, regulated rivers, operators can impact abiotic conditions for the benefit of the ecosystem, primarily by controlling the volume of discharge from upstream reservoirs. Understanding the decision space around discharge is necessary for evaluating tradeoffs between environmental and other objectives. As a result of climate change, warming water temperatures are increasingly becoming a concern for thermally‐sensitive fauna. In California's largest river, the Sacramento, extinction risk of salmon populations is linked to high water temperatures. Yet, little is known about how much water temperature in lower reaches can be affected by reservoir discharge operations, and the potential benefits to salmon. We used a process‐based water temperature model to estimate the ability of reservoir discharge to mediate river temperature heating processes impacting downstream locations (discharge‐mediated temperature management). To bound this analysis, we used historical forcings over a recent 29‐year span. Results indicate reservoir discharge increases of up to 340 cms over the historical record could have decreased water temperature in the lower reaches by up to 3.6°C. Salmon require water below 20°C during most stages of their lifecycle, and we found that normative water operations could ensure 20°C was rarely exceeded for two potential management seasons, in late‐spring and early‐fall. These periods coincide with important rearing and migratory periods for salmon, during which they frequently experience excessive temperatures under the management status‐quo. This analysis provides stakeholders tools to manage conditions for native fauna in the face of a warming climate, and a framework for developing similar tools in other large, regulated rivers.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3