Long‐Term Variability and Trends in Snow Depth and Cover Days Throughout Iranian Mountain Ranges

Author:

Sadeqi Amin1ORCID,Irannezhad Masoud23ORCID,Bahmani Shadi4,Jelodarlu Kurosh Azad4ORCID,Varandili Seyyed Alireza4ORCID,Pham Quoc Bao5

Affiliation:

1. Department of Geography and Geology University of Turku Turku Finland

2. Department of Civil Engineering College of Engineering Australian University‐Kuwait Kuwait City Kuwait

3. Water, Energy and Environmental Engineering Research Unit Faculty of Technology University of Oulu Oulu Finland

4. Department of Water Engineering Faculty of Agriculture University of Tabriz Tabriz Iran

5. Faculty of Natural Sciences Institute of Earth Sciences University of Silesia in Katowice Sosnowiec Poland

Abstract

AbstractIn Iran, the mountain snow cover generally feeds major rivers and thereby largely provides water resources required for improving human lives and protecting nature. Hence, understanding historical variability and trends in mountainous snowpack water resources in Iran in response to global warming and climate change can play a critical role in the sustainable development of this country. Accordingly, this study investigated long‐term (1982–2018) snowpack climatology at 13 hydrometeorological measurement stations scattered throughout the Iranian mountain ranges, with a focus on Elburz, Azerbaijan, Zagros, and Khorasan mountainous regions. The non‐parametric Mann‐Kendall test was used to detect statistically significant (p < 0.05) trends, the Pettitt test to identify possible abrupt shift years, the Pearson's correlation coefficient to measure relationships among different time series, and the partial correlation to determine the most important climate factor influencing snowpack dynamics The annual snow depth (maximum snow depth) significantly declined throughout Iranian mountain ranges during 1982–2018, with an average rate of 1.0 (3.4) cm decade−1. The annual snow cover days (SCDs) also showed significant decreasing trends, ranging from 3 to 15 days decade−1 during 1982–2018, in 69% of the stations studied. Such considerable reductions in snow depth and cover days were mainly related to the compound effects of substantial increases in temperature, sunshine, and wind speed as well as decreases in precipitation and cloudiness during the SCDs across the Iranian mountain ranges. However, precipitation was the most influential climate factor controlling snow resources throughout both the Elburz and Zagros mountains in Iran.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3