Comparative Assessment of Two Global Sensitivity Approaches Considering Model and Parameter Uncertainty

Author:

Dai Heng12ORCID,Liu Yujiao12,Guadagnini Alberto3ORCID,Yuan Songhu12ORCID,Yang Jing4ORCID,Ye Ming5ORCID

Affiliation:

1. State Key Laboratory of Biogeology and Environmental Geology China University of Geosciences Wuhan P. R. China

2. Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science School of Environmental Studies China University of Geosciences Wuhan P. R. China

3. Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano Milano Italy

4. College of Water Resources and Architectural Engineering Northwest A&F University Yangling China

5. Department of Earth, Ocean, and Atmospheric Science Florida State University Tallahassee FL USA

Abstract

AbstractGlobal Sensitivity Analysis (GSA) is key to assisting appraisal of the behavior of hydrological systems through model diagnosis considering multiple sources of uncertainty. Uncertainty sources typically comprise incomplete knowledge in (a) conceptual and mathematical formulation of models and (b) parameters embedded in the models. In this context, there is the need for detailed investigations aimed at a robust quantification of the importance of model and parameter uncertainties in a rigorous multi‐model context. This study aims at evaluating and comparing two modern multi‐model GSA methodologies. These are the first GSA approaches embedding both model and parameter uncertainty sources and encompass the variance‐based framework based on Sobol indices (as derived by Dai & Ye, 2015, https://doi.org/10.1016/j.jhydrol.2015.06.034) and the moment‐based approach upon which the formulation of the multi‐model AMA indices (as derived by Dell'Oca et al., 2020, https://doi.org/10.1029/2019wr025754) is based. We provide an assessment of various aspects of sensitivity upon considering a joint analysis of these two approaches in a multi‐model context. Our work relies on well‐established scenarios that comprise (a) a synthetic setting related to reactive transport across a groundwater system and (b) an experimentally‐based study considering heavy metal sorption onto a soil. Our study documents that the joint use of these GSA approaches can provide different while complementary information to assess mutual consistency of approaches and to enrich the information content provided by GSA under model and parameter uncertainty. While being related to groundwater settings, our results can be considered as reference for future GSA studies coping with model and parameter uncertainty.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3