Exploring the Critical Zone Heterogeneity and the Hydrological Diversity Using an Integrated Ecohydrological Model in Three Contrasted Long‐Term Observatories

Author:

Ackerer J.1ORCID,Kuppel S.2ORCID,Braud I.3ORCID,Pasquet S.45ORCID,Fovet O.6,Probst A.7ORCID,Pierret M. C.8,Ruiz L.6,Tallec T.9ORCID,Lesparre N.8ORCID,Weill S.8,Flechard C.6ORCID,Probst J. L.7ORCID,Marçais J.3ORCID,Riviere A.10,Habets F.11,Anquetin S.1ORCID,Gaillardet J.12ORCID

Affiliation:

1. Institut des Geosciences de l’Environnement IGE St Martin d’Hères France

2. Géosciences Environnement Toulouse CNRS‐IRD‐UPS‐CNES Toulouse France

3. INRAE RiverLy Villeurbanne France

4. Observatoire des Sciences de l’Univers CNRS ECCE TERRA UAR 3455 Sorbonne Université Paris France

5. CNRS, EPHE UMR 7619 METIS Sorbonne Université Paris France

6. INRAE Rennes France

7. Laboratoire Ecologie Fonctionnelle et Environnement ENSAT Castanet‐Tolosan France

8. Institut Terre et Environnement de Strasbourg ITES Strasbourg France

9. Centre d’Etudes Spatiales de la Biosphère CESBIO Toulouse France

10. Centre de Géosciences Mines Paris PSL Paris France

11. Laboratoire de Géologie CNRS UMR 8538 École Normale Supérieure PSL University IPSL Paris France

12. Institut de Physique du Globe IPGP Paris France

Abstract

AbstractAn integrated ecohydrological modeling approach was deployed in three long‐term critical zone (CZ) observatories of the French CZ network (CZ Observatories—Application and Research) to better understand how the CZ heterogeneity modulates the water cycle within territories. Ecohydrological simulations with the physically based model EcH2O‐iso constrained by a wide range of observations crossing several disciplines (meteorology, hydrology, geomorphology, geophysics, soil sciences, and satellite imagery) are able to capture stream water discharges, evapotranspiration fluxes, and piezometric levels in the Naizin, Auradé, and Strengbach watersheds. In Naizin, an agricultural watershed in northwestern France with a schist bedrock underlying deep weathered materials (5–15 m) along gentle slopes, modeling results reveal a deep aquifer with a large total water storage (1,080–1,150 mm), an important fraction of inactive water storage (94%), and relatively long stream water transit times (0.5–2.5 years). In the Auradé watershed, representative of agricultural landscapes of the southwestern France developed on molasse, a relatively shallow regolith (1–8 m) is observed along hilly slopes. Simulations indicate a shallow aquifer with moderate total water storage (590–630 mm), an important fraction of inactive water storage (91%), and shorter stream water transit times (0.1–1.3 years). In the Strengbach watershed, typical of mid‐mountain forested landscapes developed on granite, CZ evolution implies a shallow regolith (1–5 m) along steep slopes. Modeling results infer a shallow aquifer with the smallest total water storage (475–575 mm), the shortest stream water transit times (0.1–0.7 years), but also the highest fraction of active water storage (18%).

Funder

Institut national des sciences de l'Univers

Institut écologie et environnement

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3