BaHys—A Bayesian Modeling Framework for Long‐Term Concentration‐Discharge Hysteresis: A Case Study on Chloride

Author:

Cairoli Maria1ORCID,Souza Francisco1,Stroomberg Gerard12ORCID,Postma Geert1,Buydens Lutgarde1,Jansen Jeroen1

Affiliation:

1. Radboud University Institute for Molecules and Materials Nijmegen The Netherlands

2. RIWA Rijn Nieuwegein The Netherlands

Abstract

AbstractImproving river water quality requires a thorough understanding of the relationship between constituent concentration and water discharge during runoff events (i.e., C‐Q hysteresis), which may be strongly non‐linear. Analysis of C‐Q hysteresis on large temporal scales provides unprecedented insights into event dynamics and long‐term concentration trends in surface and groundwater. Despite the increasing availability of time series data on water quality, there are still limited quantitative modeling frameworks that enable this analysis. Here, we combine Bayesian modeling and an existing mass balance to model long‐term C‐Q hysteresis dynamics in multi‐decade constituent concentration and water discharge time series. We focus on the case study of chloride and demonstrate that our model can simultaneously characterize the size and rotation of C‐Q hysteresis, and diffuse and low‐flow inputs to constituent concentration using only time‐series data from the river Rhine. Over 28 years of monitoring, we find that chloride exhibits a dominant clockwise dilution behavior that does not vary considerably under different hydro‐climatic conditions, hinting to similar mobilization mechanisms over time. We also show decreasing chloride concentrations in surface and groundwater, due to the cessation of mining activities in the Rhine. Our approach uses uncertainty estimates to show the range within which model parameter values lie, aiding decision‐makers in a robust assessment of river water quality. We conclude that Bayesian modeling of C‐Q hysteresis provides a powerful framework for investigating long‐term contamination dynamics that can be extended to several constituents to find factors controlling their export, ultimately suggesting mitigation measures for river contamination.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3