Improved 30‐m Evapotranspiration Estimates Over 145 Eddy Covariance Sites in the Contiguous United States: The Role of ECOSTRESS, Harmonized Landsat Sentinel‐2 Imagery, Climate Reanalysis, and Deep Neural Network Postprocessing

Author:

Rashid Taufiq1ORCID,Tian Di1ORCID

Affiliation:

1. Department of Crop, Soil, and Environmental Sciences Auburn University Auburn AL USA

Abstract

AbstractThis study developed and evaluated 30‐m daily evapotranspiration (ET) estimates using the Priestley‐Taylor Jet Propulsion Laboratory (PT‐JPL) model with ECOSTRESS, Moderate MODIS, harmonized Landsat Sentinel‐2 (HLS) imagery, ERA5‐Land reanalysis, and eddy covariance measurements. The new daily 30‐m ET showed significantly improved performance (overall, r = 0.8, RMSE = 1.736, KGE = 0.466) at 145 EC sites over contiguous United States compared to the current 70‐m ECOSTRESS ET (overall, r = 0.485, RMSE = 4.696, KGE = −0.841). A deep neural network postprocessing model trained with ET measurements from EC sites further improved the performance on test sites that were not used for model training (overall, r = 0.842, RMSE = 0.88, KGE = 0.792). The 30‐m ET estimation biases were significantly related to the biases in the upwelling longwave (RUL) and downwelling shortwave radiation (RDS) inputs, with ET estimates driven by MODIS radiation showing higher biases compared to those driven by ERA5‐Land radiation. The error diagnosis using random forest indicates that ET biases tend to be larger under higher ET estimates, and RUL and RDS were the primary contributors to the high bias at the higher ET ranges, with partial dependence plots revealing that the estimation biases tend to be higher under more humid environment, denser vegetation covers, and high net radiation conditions. In conclusion, higher spatial resolution satellite imagery of vegetation characteristics and higher temporal resolution radiation data, combined with continent‐wide EC measurements and deep learning, provided substantial added value for improving ET estimations at the field scale (30‐m).

Funder

National Institute of Food and Agriculture

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3