Geologic Controls on Apparent Root‐Zone Storage Capacity

Author:

Hahm W. J.1ORCID,Dralle D. N.2ORCID,Lapides D. A.12ORCID,Ehlert R. S.1ORCID,Rempe D. M.3

Affiliation:

1. Simon Fraser University Burnaby BC Canada

2. Pacific Southwest Research Station United States Forest Service Davis CA USA

3. University of Texas at Austin Austin TX USA

Abstract

AbstractThe water storage capacity of the root zone can determine whether plants survive dry periods and control the partitioning of precipitation into streamflow and evapotranspiration. It is currently thought that top‐down, climatic factors are the primary control on this capacity via their interaction with plant rooting adaptations. However, it remains unclear to what extent bottom‐up, geologic factors can provide an additional constraint on storage capacity. Here we use a machine learning approach to identify regions with lower than climatically expected apparent storage capacity. We find that in seasonally dry California these regions overlap with particular geologic substrates. We hypothesize that these patterns reflect diverse mechanisms by which substrate can limit storage capacity, and highlight case studies consistent with limited weathered bedrock extent (melange in the Northern Coast Range), toxicity (ultramafic substrates in the Klamath‐Siskiyou region), nutrient limitation (phosphorus‐poor plutons in the southern Sierra Nevada), and low porosity capable of retaining water (volcanic formations in the southern Cascades). The observation that at regional scales climate alone does not “size” the root zone has implications for the parameterization of storage capacity in models of plant dynamics (and the interrelated carbon and water cycles), and also underscores the importance of geology in considerations of climate‐change induced biome migration and habitat suitability.

Funder

Simon Fraser University

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3