Quantifying the Impact of Human Activities on Hydrological Drought and Drought Propagation in China Using the PCR‐GLOBWB v2.0 Model

Author:

Yang Xiaoli12ORCID,Wu Fan12ORCID,Yuan Shanshui134ORCID,Ren Liliang12ORCID,Sheffield Justin5,Fang Xiuqin12,Jiang Shanhu12,Liu Yi12ORCID

Affiliation:

1. The National Key Laboratory of Water Disaster Prevention Hohai University Nanjing China

2. College of Hydrology and Water Resources Hohai University Nanjing China

3. Yangtze Institute for Conservation and Development Hohai University Nanjing China

4. Key Laboratory of Hydrologic‐Cycle and Hydrodynamic‐System of Ministry of Water Resources Hohai University Nanjing China

5. Geography and Environment University of Southampton Southampton UK

Abstract

AbstractThe economic and human losses caused by drought are increasing, driven by climate change, human activities, and increased exposure of livelihood activities in water‐dependent sectors. Mitigation of these impacts for socio‐ecological securit is necessary to gain a better understanding of how human activities contribute to the propagation of drought as water management further develops. The previous studies investigated the impact of human activities on a macro level, but they overlooked the specific effects caused by human water management measures. In addition, most studies focus on the propagation time (PT, the number of months from meteorological drought propagation to hydrological drought), while other drought propagation characteristics, such as duration, magnitude, and recovery time, are not yet sufficiently understood. To tackle these issues, the PCR‐GLOBWB v2.0 hydrological model simulated hydrological processes in China under natural and human‐influenced scenarios. The study assessed how human activities impact hydrological drought and its propagation. Result shows that human activities have exacerbated hydrological drought in northern China, while it is mitigated in the south. The propagation rate (PR, proportion of meteorological drought propagation to hydrological drought) ranges from 45% to 75%, and the PT is 6–23 months. The PR does not differ substantially between the north and south, while the PT is longer in the north. The PR decreases by 1%–60% due to human activities, and the PT decreases (1–13 months) in the north and increases (1–10 months) in the south. Human activities display significant variations in how they influence the propagation process of drought across different basins. The primary factors driving the spatial pattern of drought disparities are regional variations in irrigation methods and the storage capacity of reservoirs.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3