Using Convex Optimization to Efficiently Apportion Tracer and Pollutant Sources From Point Concentration Observations

Author:

Barnes Richard1ORCID,Lipp Alex G.2ORCID

Affiliation:

1. Lawrence Berkeley National Lab Berkeley CA USA

2. Merton College University of Oxford Oxford UK

Abstract

AbstractRivers transport elements, minerals, chemicals, and pollutants produced in their upstream basins. A sample from a river is a mixture of all of its upstream sources, making it challenging to pinpoint the contribution from each individual source. Here, we show how a nested sample design and convex optimization can be used to efficiently unmix downstream samples of a well‐mixed, conservative tracer in a steady state system into the contributions of their upstream sources. Our approach is significantly faster than previous methods. We represent the river's sub‐catchments, defined by sampling sites, using a directed acyclic graph. This graph is used to build a convex optimization problem which, thanks to its convexity, can be quickly solved to global optimality—in under a second on desktop hardware for data sets of ∼100 samples or fewer. Uncertainties in the upstream predictions can be generated using Monte Carlo resampling. We provide an open‐source implementation of this approach in Python. The inputs required are straightforward: a table containing sample locations and observed tracer concentrations, along with a D8 flow‐direction raster map. As a case study, we use this method to map the elemental geochemistry of sediment sources for rivers draining the Cairngorms mountains, UK. This method could be extended to non‐conservative and non‐steady state tracers. We also show, theoretically, how multiple tracers could be simultaneously inverted to recover upstream run‐off or erosion rates as well as source concentrations. Overall, this approach can provide valuable insights to researchers in various fields, including water quality, geochemical exploration, geochemistry, hydrology, and wastewater epidemiology.

Funder

Lawrence Berkeley National Laboratory

Merton College, University of Oxford

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3