Land Surface Modeling as a Tool to Explore Sustainable Irrigation Practices in Mediterranean Fruit Orchards

Author:

Dombrowski O.1ORCID,Brogi C.1ORCID,Hendricks Franssen H.‐J.1ORCID,Pisinaras V.2ORCID,Panagopoulos A.2ORCID,Swenson S.3ORCID,Bogena H.1ORCID

Affiliation:

1. Agrosphere (IBG‐3) Forschungszentrum Jülich GmbH Jülich Germany

2. Soil & Water Resources Institute Hellenic Agricultural Organization Thessaloniki Greece

3. Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA

Abstract

AbstractIrrigation strongly influences land‐atmosphere processes from regional to global scale. Therefore, an accurate representation of irrigation is crucial to understand these interactions and address water resources issues. While irrigation schemes are increasingly integrated into land surface models, their evaluation and further development remains challenging due to data limitations. This study assessed the representation of field‐scale irrigation using the Community Land Model version 5 (CLM5) through comparison of observed and simulated soil moisture, transpiration and crop yield. Irrigation was simulated by (a) adjusting the current irrigation routine and (b) by implementing a novel irrigation data stream that allows to directly use observed irrigation amounts and schedules. In a following step, the effect of different irrigation scenarios at the regional scale was simulated by using this novel data stream. At the plot scale, the novel irrigation data stream performed better in representing observed SM dynamics compared to the current irrigation routine. Nonetheless, simplifications in crop and irrigation representation and uncertainty in the relation between water stress and yield currently limit the ability of CLM5 for field‐scale irrigation scheduling. Still, the simulations revealed valuable insights into model performance that can inform and improve the modeling beyond the field scale. At regional scale, the simulations identified irrigation priorities and potential water savings. Furthermore, application of LSMs such as CLM5 can help to study the effects of irrigation beyond water availability, for example, on energy fluxes and climate, thus providing a powerful tool to assess the broader implications of irrigation at larger scale.

Funder

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

National Center for Atmospheric Research

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3