Stochastic Dynamics of Two‐Dimensional Particle Motion in Darcy‐Scale Heterogeneous Porous Media

Author:

Dell’Oca Aronne1ORCID,Dentz Marco2ORCID

Affiliation:

1. Dipartimento di Ingegneria Civile e Ambientale (DICA) Politecnico di Milano Milan Italy

2. Spanish National Research Council (IDAEA‐CSIC) Barcelona Spain

Abstract

AbstractWe study the upscaling and prediction of ensemble dispersion in two‐dimensional heterogeneous porous media with focus on transverse dispersion. To this end, we study the stochastic dynamics of the motion of advective particles that move along the streamlines of the heterogeneous flow field. While longitudinal dispersion may evolve super‐linearly with time, transverse dispersion is characterized by ultraslow diffusion, that is, the transverse displacement variance grows asymptotically with the logarithm of time. This remarkable behavior is linked to the solenoidal character of the flow field, which needs to be accounted for in stochastic models for the two‐dimensional particle motion. Here, we derive an upscaled model based on the statistical characterization of the motion of solute particles. To this end, we analyze particle velocities and orientations through equidistant sampling along the particle trajectories obtained from direct numerical simulations. This sampling strategy respects the flow structure, which is organized on a characteristic length scale. Perturbation theory shows that the longitudinal particle motion is determined by the variability of travel times, while the transverse motion is governed by the fluctuations of the space increments. The latter turns out to be strongly anticorrelated with a correlation structure that leads to ultraslow diffusion. Based on this analysis, we derive a stochastic model that combines a correlated Gaussian noise for the transverse motion with a spatial Markov model for the particle speeds. The model results are contrasted with detailed numerical simulations in two‐dimensional heterogeneous porous media of different heterogeneity variances.

Funder

Horizon 2020 Framework Programme

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3