Hydrodynamic and Morphological Adaptation of Two Consecutive Sharp Bends of the Middle Yangtze River to Upstream Damming

Author:

Liu Xin1,Xia Junqiang1ORCID,Deng Shanshan1,Zhou Meirong1ORCID,Mao Beiping2,Blanckaert Koen3ORCID

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management Wuhan University Wuhan China

2. Bureau of Hydrology Changjiang Water Resources Commission Wuhan China

3. Institute of Hydraulic Engineering and Water Resources Management Research Unit Hydraulic Engineering and Environmental Hydromechanics Technische Universität Wien (TU Wien) Vienna Austria

Abstract

AbstractIt remains an open question how the hydrodynamics and morphology in sharp meander bends adapt to the changes in flow and sediment conditions induced by upstream damming. This study reports a comprehensive investigation into the morphological changes, patterns of mean and secondary flows and sediment transport around two consecutive sharp bends in the Middle Yangtze River (MYR), and explains these changes from the viewpoint of flow‐sediment transport‐morphology interaction based on field measurements. With the Three Gorges Project operation, the MYR suffered a remarkable channel degradation due to a sudden decrease of incoming sediment discharge. The point bars were removed, and outer‐bank benches (OBB) formed upstream of the bend apices, which resulted in quite different flow and sediment transport patterns in the bends. The highest velocity zones and center‐region cells of secondary flow were more toward the inner bank due to the lack of point bars, and the outward migration of momentum was delayed. Flow recirculation zones were observed over the OBBs, covering 12%–58% of the channel width. The transport rates of suspended load accounted for 98% of the total sediment load, and the outward shift of the highest transport rate zone was confined by the OBBs, which reduced the effective width of sediment transport. These changes in flow and sediment transport re‐inforced the morphological changes around the sharp bends: the velocity redistribution and evolution of scour factor lagged more behind planform curvature, which further promoted the erosion of point bars and the development of OBB.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3