Enhanced CO2 Degassing From the Tropical Indian Ocean During Cold Climatic Events of the Last Glacial Cycle

Author:

Tarique Mohd1ORCID,Rahaman Waliur1ORCID,Lathika N.1ORCID,Prabhat Priyesh1ORCID,Thamban Meloth1ORCID,Misra Sambuddha2ORCID

Affiliation:

1. National Centre for Polar and Ocean Research Ministry of Earth Sciences Goa India

2. Centre for Earth Sciences Indian Institute of Science Bangalore India

Abstract

AbstractAtmospheric CO2 variability on the glacial–interglacial (G–IG) timescale reflects a balance between oceanic and terrestrial processes involving carbon uptake and release. The Southern Ocean CO2 uptake is considered as an important modulator for the G–IG atmospheric CO2 variability, while the role of tropical ocean ventilation remains enigmatic. We present critical evidence for CO2 ventilation from the tropical Indian Ocean through the reconstruction of the Arabian Sea‐surface pCO2 for the past ∼136 ka utilizing boron isotope (δ11B) record of planktic foraminifera, Globigerinoides ruber. Our site in the Arabian Sea presently acts as a significant source of CO2. The reconstructed ΔpCO2pCO2 = pCO2 Seawater − pCO2 Atmosphere) record shows an enhanced CO2 degassing up to ∼50 ppm during the major cooling events, such as the Last Glacial Maximum, Younger Dryas, and Heinrich‐Stadials. Our investigation based on multiproxy records of sea‐surface temperature, salinity, and productivity suggests that the northward invasion and shoaling of southern source CO2‐rich water, coupled with stronger upwelling, resulted in CO2 degassing during these cold intervals. This finding is in align with the tropical Atlantic which also demonstrated an enhanced CO2 degassing during the cold intervals; however, most of the upwelled CO2 was consumed as the water moved away from the upwelling sites. Therefore, our finding, when considered alongside tropical Atlantic records, suggests that tropical oceans played a minor role in reducing atmospheric CO2 levels during the cold intervals of the last glacial cycle, supporting the prevailing hypothesis.

Funder

Ministry of Earth Sciences

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3