Development of a Deep‐Water Carbonate Ion Concentration Proxy Based on Preservation of Planktonic Foraminifera Shells Quantified by X‐Ray CT Scanning

Author:

Iwasaki S.12ORCID,Kimoto K.3ORCID,Kucera M.1ORCID

Affiliation:

1. MARUM—Center for Marine Environmental Sciences University of Bremen Bremen Germany

2. Graduate School of Environmental Science Hokkaido University Sapporo Japan

3. Japan Agency for Marine‐Earth Science and Technology Research Institute for Global Change Yokosuka Japan

Abstract

AbstractThe quantitative and objective characterization of dissolution intensity in fossil planktonic foraminiferal shells could be used to reconstruct past changes in bottom water carbonate ion concentration. Among proxies measuring the degree of dissolution of planktonic foraminiferal shells, X‐ray micro‐Computed Tomography (CT) based characterization of apparent shell density appears to have good potential to facilitate quantitative reconstruction of carbonate chemistry. However, unlike the well‐established benthic foraminiferal B/Ca ratio‐based proxy, only a regional calibration of the CT‐based proxy exists based on a limited number of data points covering mainly low‐saturation state waters. Here we determined by CT‐based proxy the shell dissolution intensity of planktonic foraminifera Globigerina bulloides, Globorotalia inflata, Globigerinoides ruber, and Trilobatus sacculifer from a collection of core top samples in the Southern Atlantic covering higher saturation states and assessed the reliability of CT‐based proxy. We observed that the CT‐based proxy is generally controlled by deep‐water Δ[] like the B/Ca proxy, but its effective range of Δ[] is between −20 and 10 µmolkg−1. In this range, the CT‐based proxy appears directly and strongly related to deep‐water Δ[], whereas we note that in some settings, there appears to be a secondary influence on B/Ca which we suggest may be due to elevated alkalinity from carbonate dissolution in sediments. On the other hand, the CT‐based proxy is affected by supralysoclinal dissolution in areas with high productivity. Like the B/Ca proxy, the CT‐based proxy requires species‐specific calibration, but the effect of species‐specific shell difference in susceptibility to dissolution on the proxy is small.

Funder

Deutsche Forschungsgemeinschaft

Japan Agency for Marine-Earth Science and Technology

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3