Affiliation:
1. Department of Earth, Environmental, & Planetary Sciences Brown University Providence RI USA
2. Institute at Brown for Environment and Society Brown University Providence RI USA
3. Global Geophysics Group Faculty of Mining and Petroleum Engineering Institut Teknologi Bandung Bandung Indonesia
Abstract
AbstractThe tropics exert enormous influence on global climate. Despite the importance of tropical regions, the terrestrial temperature history in the Indo‐Pacific Warm Pool (IPWP) region during the last deglaciation is poorly constrained. Although numerous sea surface temperature (SST) reconstructions provide estimates of SST warming from the Last Glacial Maximum to the Holocene, the timing of the onset of deglacial warming varies between records and inhibits determining the forcings driving deglacial warming in the IPWP. We present a 60,000‐year long temperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a sediment core from Lake Towuti, located in Sulawesi, Indonesia. BrGDGTs are bacterial membrane‐spanning lipids that, globally, become more methylated with decreasing temperature and more cyclized with decreasing pH. Although changes in temperature are the dominant control on brGDGTs in regional and global calibrations, we find that the cyclization of the brGDGTs is a major mode of variation at Lake Towuti that records important changes in the lacustrine biogeochemical environment. We separate the influence of lake chemistry changes from temperature changes on the brGDGT records, and develop a temperature record spanning the last 60,000 years. The timing of the deglacial warming in our record occurs after the onset of the deglacial increase in CO2 concentrations, which suggests rising greenhouse gas concentrations and the associated radiative forcing may have forced deglacial warming in the IPWP. Peaks in temperature around 55 and 34 ka indicate that Northern Hemisphere summer insolation may also influence land surface temperature in the IPWP region.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Paleontology,Atmospheric Science,Oceanography
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献