The Zonal Patterns in Late Quaternary Tropical South American Precipitation

Author:

Kukla T.12ORCID,Winnick M. J.3ORCID,Laguë M. M.45ORCID,Xia Z.36ORCID

Affiliation:

1. Department of Geosciences Colorado State University Fort Collins CO USA

2. Department of Geological Sciences Stanford University Stanford CA USA

3. Department of Earth, Geographic, and Climate Sciences University of Massachusetts Amherst MA Amherst USA

4. University of Saskatchewan Coldwater Lab Canmore AB Canada

5. Department of Atmospheric Sciences University of Utah Salt Lake City UT USA

6. Key Laboratory of Geogrpahical Processes and Ecological Security in Changbai Mountains Ministry of Education School of Geographical Sciences Northeast Normal University Changchun China

Abstract

AbstractSpeleothem oxygen isotope records (δ18O) of tropical South American rainfall in the late Quaternary show a zonal “South American Precipitation Dipole” (SAPD). The dipole is characterized by opposing east‐west precipitation anomalies compared to the present—wetter in the east and drier in the west at the mid‐Holocene (∼7 ka), and drier in the east and wetter in the west at the Last Glacial Maximum (∼21 ka). However, the SAPD remains enigmatic because it is expressed differently in western versus eastern δ18O records and isotope‐enabled climate model simulations usually misrepresent the magnitude and/or spatial pattern of δ18O change. Here, we address the SAPD enigma in two parts. First, we re‐interpret the δ18O data to account for upwind rainout effects that are known to be pervasive in tropical South America, but are not always considered in Quaternary paleoclimate studies. Our revised interpretation reconciles the δ18O data with cave infiltration and other proxy records, and indicates that the centroid of tropical South American rainfall has migrated zonally over time. Second, using an energy balance model of tropical atmospheric circulation, we hypothesize that zonal migration of the precipitation centroid can be explained by regional energy budget shifts, such as changing Saharan albedo associated with the African Humid Period, that have not been modeled in previous SAPD studies. This hypothesis of a migrating precipitation centroid presents a new framework for interpreting δ18O records from tropical South America and may help explain the zonal rainfall anomalies that predate the late Quaternary.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3