Affiliation:
1. Department of Civil and Environmental Engineering University of Strathclyde Glasgow UK
2. Department of Mathematics and Statistics Faculty of Environment, Science and Economy University of Exeter Exeter UK
3. School of Engineering Newcastle University Newcastle UK
4. Tyndall Centre for Climate Research Newcastle University Newcastle UK
5. School of Civil, Environmental and Mining Engineering University of Adelaide Adelaide SA Australia
Abstract
AbstractHeatwaves have been shown to increase the likelihood and intensity of extreme rainfall occurring immediately afterward, potentially leading to increased flood risk. However, the exact mechanisms connecting heatwaves to extreme rainfall remain poorly understood. In this study, we use weather type data sets for Australia and Europe to identify weather patterns, including fronts, cyclones, and thunderstorm conditions, associated with heatwave terminations and following extreme rainfall events. We further analyze, using reanalysis data, how atmospheric instability and moisture availability change before and after the heatwave termination depending on whether the heatwave is followed by extreme rainfall, as well as the location of the heatwave. We find that most heatwaves terminate during thunderstorm and/or frontal conditions. Additionally, atmospheric instability and moisture availability increase several days before the heatwave termination; but only if heatwaves are followed by extreme rainfall. We also find that atmospheric instability and moisture after a heatwave are significantly higher than expected from climatology for the same time of the year, and that highest values of instability and moisture are associated with highest post‐heatwave rainfall intensities. We conclude that the joint presence of high atmospheric instability, moisture, as well as frontal systems are likely to explain why rainfall is generally more extreme and likely after heatwaves, as well as why this compound hazard is mainly found in the non‐arid mid and high latitudes. An improved understanding of the drivers of these compound events will help assess potential changing impacts in the future.
Funder
Engineering and Physical Sciences Research Council
Natural Environment Research Council
HORIZON EUROPE Framework Programme
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献