Influence of the Pacific Decadal Oscillation on Winter Temperatures and Precipitation Over the Southern Tibetan Plateau

Author:

Xiang Yuying12,Wang Tao13ORCID,Wang Huijun13,Xu Hongna1ORCID

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science and Technology Nanjing China

2. Longshan Meteorological Bureau of Xiangxi Autonomous Prefecture Xiangxi China

3. Climate Change Research Center and Nansen‐Zhu International Research Centre Institude of Atmospheric Physics Chinese Academy of Sciences Beijing China

Abstract

AbstractWe used observational data and a long‐term piControl simulation from the Community Earth System Model Version 2 to investigate the influence of the Pacific Decadal Oscillation (PDO) on the winter climate over the Tibetan Plateau. The results showed that changes in the phase of the PDO have a significant effect on winter temperatures and precipitation over the southern Tibetan Plateau. Changes in the sea surface temperature (SST) during the positive PDO can weaken the Walker circulation and increase the SST in the Indian Ocean. Our analyses of the moist static energy showed that warming of the tropical troposphere over the Indian Ocean caused by the increased SST has resulted in the horizontal advection of anomalous moist enthalpy by the climatological zonal winds, which was responsible for anomalous ascending motion over the Tibetan Plateau. The additional moisture budget suggests that enhanced vertical motion contributes to the increase in winter precipitation and related total cloud cover over the Tibetan Plateau, leading to the increase of snow depth. The increased total cloud cover and snow depth, in turn, reduces net surface shortwave radiation. The surface air temperature of the Tibetan Plateau is then decreased as a result of the reduction in the net surface shortwave radiation. The PDO therefore has an important modulating role in the interdecadal variability of the winter climate over the Tibetan Plateau. We therefore need to focus on changes in the PDO in research related to the decadal prediction of the climate over the Tibetan Plateau.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3