Reasons for Low Fraction of Arctic Stratospheric Cloud in 2014/2015 Winter

Author:

Zhao Zhixin12,Wang Wencai12ORCID,Wang Yuwei2,Sheng Lifang2ORCID,Zhou Yang2ORCID,Teng Shiwen2

Affiliation:

1. Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory Ocean University of China Qingdao China

2. College of Oceanic and Atmospheric Sciences Ocean University of China Qingdao China

Abstract

AbstractPolar stratospheric clouds (PSCs) play a key role in Arctic amplification and stratospheric ozone destruction in polar regions. In this paper, we used the CALIPSO data to analyze the spatiotemporal distribution of Arctic PSCs from 2006 to 2021. We found that Arctic PSCs mainly appear in December, peak in late December and early January, disappearing in late February and early March. PSCs can extend from heights near the tropopause to over 25 km. However, there is the lowest fraction of PSCs in the 2014/2015 winter. This study found that the temperature in the 2014/2015 winter was warmer than the 15‐year average temperature, with the lowest temperature slightly below the PSCs formation temperature of about 5 K. The formation of the Ural blocking high accompanied by the poleward propagation of the planetary wave caused a sudden stratospheric warming (SSW) event on 3 January 2015, during which the warm air entered the polar vortex and divided it into two lobes. Additionally, a reduction in SO2 column mass density before the SSW event resulted PSCs occurring with a frequency of only 0.148 and dissipating rapidly in December. Moreover, the concentration of H2O and HNO3 in the gravitational settling process of PSCs decreased by 20–50%, the reduction of condensation nuclei made PSCs with the highest frequency of 0.074 in February appear briefly and then disappear. The chemical and dynamic analysis of PSCs formation is needed to further understand the spatiotemporal distribution of Arctic PSCs and to better predict future Arctic amplification and ozone destruction.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3