Validation of Two Newly Developed Albedo Schemes Based on the Observations Over the Region With Evergreen Broadleaved Forest in Southern China

Author:

Wang Huan12,Wei Zhigang1ORCID,Huang Anning2ORCID,Li Xianru1,Ma Li1,Guo Shitong1

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China

2. School of Atmospheric Sciences Nanjing University Nanjing China

Abstract

AbstractExisting land surface models still have large error in the simulation of surface albedo. At present, introducing the influence of meteorological factors into the albedo parameterization scheme is an effective way to improve the albedo simulation. However, the improvement of the vegetation canopy surface albedo parameterization scheme is still insufficient. Therefore, based on the radiation and meteorological observation data during 1 November 2015–30 April 2018 from a land‐atmosphere interaction observation tower in a typical secondary evergreen broadleaved forest in Southern China, this study firstly analyzed the influencing factors of canopy surface albedo. It was found that the solar elevation angle and air relative humidity are two key factors influencing the canopy surface albedo, and the impact of the solar elevation angle on canopy surface albedo is not exactly the same on diurnal and seasonal scales. Then, two new canopy surface albedo parameterization schemes of additive form and multiplicative form were proposed and introduced into CLM5 model for single point simulation. Results show that the adoption of newly developed canopy surface albedo parameterization schemes can improve the simulation of diurnal and seasonal variations of albedo and reduce the overestimation of the simulation of near‐infrared radiation albedo and visible radiation albedo in the CLM5 model, then significantly reduce the root mean square errors of reflected solar radiation and net radiation simulation.

Funder

State Key Laboratory of Earth Surface Processes and Resource Ecology

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3