A Structured Graph Neural Network for Improving the Numerical Weather Prediction of Rainfall

Author:

Peng Xuan1ORCID,Li Qian1ORCID,Chen Lei2ORCID,Ning Xiangyu1,Chu Hai2ORCID,Liu Jinqing3

Affiliation:

1. College of Meteorology and Oceanography National University of Defense Technology Changsha China

2. Technology Development Department Shanghai Central Meteorological Observatory Shanghai China

3. Hunan Meteorological Observatory Changsha China

Abstract

AbstractThe current challenges of numerical weather prediction (NWP) of rainfall mainly stem from the complex and multiscale nature of rainfall. In recent years, as observation capability improved worldwide, there has been an increased feasibility to use data‐driven models to enhance forecasting performance with rainfall observation. Compared to traditional statistical and machine learning models, deep‐learning models show considerable promise in capturing the spatial‐temporal features of weather processes from multiple predictors, but the convolution‐based feature extractor is suboptimal due to the linear nature of convolution kernels. In this study, a multilevel forecasting model is proposed to forecast each rainfall level, in which each submodel adopts a graph neural network for feature extraction. Spatial and temporal propagation functions based on grid structure are designed to explicitly represent feature fusion and propagation of multiple predictors across multiple scales. On model training, a weight setting strategy that balances the impact of samples with different rainfall values on the total training loss is proposed, and a soft classification label is designed to convert observed rainfall into the probability of rainfall above each threshold. The proposed model was trained and validated on NWP data provided by European Center for Medium‐Range Weather Forecast, and results show significant improvement over the NWP in terms of threat score (TS) and Heidke Skill Score (HSS) scores. Analysis of the forecast results for two typical rainfall processes also illustrates that the proposed method can predict rainfall with more reasonable location and intensity.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3