Observational Evaluation of Estimated Air Exchange Flux Between Atmospheric Boundary Layer and Free Troposphere With WRF Model

Author:

Jin Xipeng1ORCID,Cai Xuhui2ORCID,Li Qianhui3ORCID,Zhang Hongsheng4ORCID,Song Yu2ORCID,Wang Xuesong2ORCID,Kang Ling2,Zhu Tong2ORCID

Affiliation:

1. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control School of Environmental Science and Engineering Nanjing University of Information Science & Technology Nanjing China

2. State Key Lab of Environmental Simulation and Pollution Control College of Environmental Sciences and Engineering Peking University Beijing China

3. Tianjin Key Laboratory for Oceanic Meteorology Tianjin Meteorological Service Center Tianjin Meteorological Bureau Tianjin China

4. Department of Atmospheric and Oceanic Sciences School of Physics Peking University Beijing China

Abstract

AbstractVertical exchange between the atmospheric boundary layer (ABL) and free troposphere (FT) is a key link in coupling the earth's surface and upper atmosphere. This process is usually quantified by numerical simulations, while its reliability is not well assessed until now. Using space‐time intensified ABL observations, we evaluate the ABL‐FT air mass exchange flux derived from the Weather Research and Forecast (WRF) model. A six‐site sounding experiment is conducted in the North China Plain during the wintertime of 2019. The measured data is processed to provide enough information to derive the vertical exchange flux corresponding to the model‐based result, so that a systematic comparison is conducted. Three physical processes involved in ABL‐FT vertical exchange are quantitatively evaluated, that is, temporal variation of ABL height, advection across the inclined ABL top, and vertical motion at the ABL‐FT interface. Results show that the model‐based and observation‐based fluxes are generally agreed in temporal evolution (R = 0.67, p < 0.01), both characterized by 4–6 days periodicity and diurnal cycle. Their relative mean error was about 45% during the whole study period, mainly stemming from the vertical motion term and the advection crossing term. The model inaccuracy in representing these relevant processes at the ABL top is largely responsible for the discrepancy. Besides, the difference may also be attributed to the observational uncertainty (∼22%) that is caused by the measurement's difficulties in determining ABL spatial variation and acquiring vertical velocity. Through this study, the credibility and limitation of the WRF model in deriving ABL‐FT exchange flux are quantified.

Funder

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3