Vibrational Kinetics of NO and N2 in the Earth's Middle Atmosphere During GLE69 on January 20, 2005

Author:

Kirillov A. S.1ORCID,Belakhovsky V. B.1,Maurchev E. A.1,Balabin Yu.V.1,Germanenko A. V.1ORCID,Gvozdevsky B. B.1ORCID

Affiliation:

1. Polar Geophysical Institute Apatity Russia

Abstract

AbstractThe mechanisms of the production of vibrationally excited NO and N2 molecules at the altitudes of the middle atmosphere of the Earth during high‐energetic proton precipitation on 20 January 2005 are considered. The study of vibrational populations N2(X1Σg+,v′ > 0) during high‐energetic proton precipitation has shown different principal mechanisms in the N2(X1Σg+,v′ > 0) excitation. First, the excitation by secondary electrons is principal for vibrational levels v′ = 1−10. Second, it is obtained that intramolecular electron energy transfer process in N2(A3Σu+)+N2 collisions dominates in vibrational excitation of high vibrational levels v′ = 20−30. It is shown that the chemical reaction of metastable atomic nitrogen with molecular oxygen is the main production mechanism of vibrationally excited NO(X2Π,v > 0) and of the radiation of 5.3 and 2.7 μm infrared emissions at these altitudes. The calculated intensities of the 5.3 μm emission are compared with experimental data from SABER instrument on TIMED spacecraft received at the time of the proton precipitation. The role of VV′‐processes in the radiation of 5.3 μm infrared emission is discussed.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3