Roles of Gravity Waves in Preconditioning of a Stratospheric Sudden Warming

Author:

Okui H.12ORCID,Koshin D.13ORCID,Watanabe S.4ORCID,Sato K.1ORCID

Affiliation:

1. Department of Earth and Planetary Science Graduate School of Science The University of Tokyo Tokyo Japan

2. Now at Department of Electronic and Electrical Engineering University of Bath Bath UK

3. Now at National Center for Atmospheric Research Boulder CO USA

4. Japan Agency for Marine‐Earth Science and Technology Yokohama Japan

Abstract

AbstractAs well as strong upward propagation of planetary waves from the troposphere, the state of the stratospheric mean flow has been recognized as a key factor for the occurrence of stratospheric sudden warmings (SSWs). The modification of the mean flow to a suitable state for an SSW occurrence is called “vortex preconditioning.” Recently, increasing attention has been paid to the role of gravity waves (GWs) in the preconditioning mechanism. However, because of the limited availability of data sets covering the whole neutral atmosphere, much uncertainty still exists in the role of GWs in the preconditioning. The aim of this study is to investigate the mechanism of modification of the mean flow in the stratosphere and mesosphere before SSWs from a climatological viewpoint and elucidate the role of GWs in it. We use two state‐of‐the‐art data sets covering the whole neutral atmosphere: a 17‐year medium‐resolution reanalysis data set and the output data from hindcast simulations performed with a GW‐permitting general circulation model. It is shown that the second principal component of the zonal‐mean zonal wind in the stratosphere and mesosphere tends to show a maximum prior to an SSW, characterizing preconditioning. GW forcing alters the structure of the upper part of the jet and contributes to the preconditioning along with planetary waves. Comparison of GW forcing between the reanalysis and GW‐permitting model suggests that the magnitude of parameterized GW forcing is approximately half that of the GW forcing in the polar upper stratosphere where the forcing is responsible for the preconditioning.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3