Characteristics of Warm‐Season Mesoscale Convective Systems Over the Yangtze–Huaihe River Basin (YHR): Comparison Between Radar and Satellite

Author:

Lu Yutong123,Tang Jianping12ORCID,Xu Xin12ORCID,Tang Ying4,Fang Juan12ORCID

Affiliation:

1. Key Laboratory of Mesoscale Severe Weather/Ministry of Education Nanjing University Nanjing China

2. School of Atmospheric Sciences Nanjing University Nanjing China

3. School of Earth and Environment Institute for Climate and Atmospheric Science University of Leeds Leeds UK

4. Nanjing Marine Radar Institute Nanjing China

Abstract

AbstractMesoscale convective systems (MCSs) are crucial in modifying the water cycle and frequently induce high‐impact weather events over eastern China. Radar and Climate Prediction Center (CPC)‐4 km satellite‐derived infrared cloud top temperature (Tb) data were used to thoroughly analyze the long‐term climatology of MCSs over eastern China, particularly in the Yangtze–Huaihe River Basin (YHR) in the warm season from 2013 to 2018. For the first time, we contrasted the effects of data set selection and threshold setting on research outcomes. The large‐scale environments of MCSs initiation were also investigated using the latest global reanalysis data ERA5. It is found that striction of thresholds, including duration, reflectivity/Tb, area, and linearity, would lead to a greater proportion of early‐morning MCSs. Satellite‐identified MCSs differed from radar‐derived ones, exhibiting afternoon diurnal peaks, faster movement speeds, longer travel distances, and expansive impact areas. The center of MCS and related precipitation shifted northward from Pre‐Meiyu to Post‐Meiyu seasons, contributing to up to 20% of total rainfall, with most MCSs moving along eastward trajectories. MCSs typically had the most substantial impact in the Meiyu season because of the most prolonged duration, largest convective core area, and strongest precipitation intensity. Warm‐season MCSs initiated ahead of midlevel troughs and were related to strong anomalous low‐level convergence and midlevel upward. The circulation anomalies were the strongest in the Pre‐Meiyu season among the three subseasons, with most moisture sourced from the southwest.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3