Affiliation:
1. Department of Meteorology University of Oklahoma Norman OK USA
2. Cooperative Institute for Severe and High Impact Weather Research and Operations (CIWRO) Norman OK USA
Abstract
AbstractThe accurate representation of Cold Air Outbreaks (CAOs) and affiliated mixed‐phase boundary layer (BL) clouds in models is challenging. How BL cloud properties evolve during CAOs and their dependence on meteorological conditions is not well understood but is important for the simulation of Earth's energy budgets. Here the properties of polar BL clouds over the North Atlantic (NA) and Southern Ocean (SO) are compared using observations from the Measurements of Aerosol Radiation and CloUds over the SO (MARCUS) and CAOs in the Marine BL Experiment (COMBLE) conducted over the NA. MARCUS observations show a stronger BL inversion than COMBLE, with a higher mean EIS (estimated inversion strength)/LTS (lower tropospheric stability) of −0.03 K/13 K compared to COMBLE’s −3.2 K/9.3 K. 39% of CAOs observed during COMBLE were intense with M > 5 K, while MARCUS only had 1.3%. 78%/72% of clouds sampled in CAOs during COMBLE/MARCUS had cloud top heights <4 km. The mean BL cloud top height was over 400 m higher, and the BL was over 500 m deeper for M of 10 K compared to 0 K for both regions. MARCUS observed a 27% moister BL structure than COMBLE when M > 5 K due to stronger BL inversion trapping more moisture within the BL. Under the same LTS, EIS, and M conditions, MARCUS observed a 12% drier BL structure, and clouds were 46% more turbulent than COMBLE. During CAOs, 54% of single‐layer BL clouds sampled during MARCUS had liquid‐dominated bases compared to 39% during COMBLE.
Funder
U.S. Department of Energy
Publisher
American Geophysical Union (AGU)