Precipitation Efficiencies in a Climatology of Southern Ocean Extratropical Cyclones

Author:

Dacre H. F.1ORCID,Martinez‐Alvarado O.2ORCID,Hodges K. I.12

Affiliation:

1. Department of Meteorology University of Reading Reading UK

2. National Centre for Atmospheric Science University of Reading Reading UK

Abstract

AbstractPrecipitation efficiency refers to the amount of water that is lost from the atmosphere through precipitation compared to the available water vapor in the atmosphere. This metric plays a critical role in understanding precipitation patterns. However, calculating precipitation efficiency for extratropical cyclones can be challenging because cyclones are dynamic and move through the atmosphere as they evolve. To overcome this challenge, our study uses ERA5 reanalysis data to estimate precipitation efficiencies for 400 Southern Ocean cyclones, with a frame of reference that moves with the individual cyclones. Our findings indicate that at maximum intensity, average precipitation efficiencies reach a maximum of 60%/6 hr near the warm front where ascent rates are the largest. Typically, within 24–36 hr after cyclogenesis, all of the initial water vapor available within 500 km of a cyclone center is lost due to precipitation. However, a cyclone's precipitating phase is prolonged due to local evaporation and moisture flux convergence (MFC), which replenish the moisture lost via precipitation. Close to the cyclone center, MFC provides additional moisture from the environment into which cyclones are traveling. On average, this extends a cyclone's precipitation phase to over 60 hr after cyclogenesis. Thus, while moisture from the genesis location is quickly removed from the cyclone via precipitation, cyclones are replenished by moisture along their track, which doubles the timescale for a cyclone's precipitating phase.

Funder

Science and Technology Facilities Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3