Combined Impacts of the Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation on Summer Precipitation in Eastern China During the Medieval Climate Anomaly and Little Ice Age

Author:

Ge Yucen12,Miao Jiapeng1ORCID,Lang Xianmei1,Si Dong1ORCID,Jiang Dabang123ORCID

Affiliation:

1. Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

3. National Institute of Natural Hazards Ministry of Emergency Management of China Beijing China

Abstract

AbstractWe investigate the joint effects of the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) on eastern China summer precipitation (ECSP) during two typical periods in the last millennium [i.e., the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA)] using simulations from five selected climate models. The multimodel mean indicates that the ECSP anomalies under the four combined AMO and PDO phases differ between the MCA and the LIA. During the MCA, the meridional wave train induced by the PDO‐related convective heating over the northwestern Pacific is dominant and the zonal wave train related to the AMO is secondary. Independent of the AMO phase, deficient precipitation appears over South China in both PDO+ phases and vice versa. Meanwhile, most areas north of the Yangtze River valley feature positive anomalies in the PDO+/AMO+ phase but deficits in the PDO+/AMO− phase. In comparison, the Huanghe‐Huaihe River valley and southern Northeast China receive excessive and deficient precipitation in the PDO−/AMO+ and PDO−/AMO− phases, respectively. During the LIA, the zonal wave train induced by the AMO locates more southeastward than that during the MCA and has an overwhelming impact on the ECSP. Specifically, regardless of the PDO phase, excessive ECSP exists over Northeast China and South China in both AMO+ phases and vice versa. Moreover, precipitation between the two regions is excessive when the PDO is in phase with the AMO but deficient when they are out of phase.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3