Impacts of Local Circulations on Ozone Pollution in the New York Metropolitan Area: Evidence From Three Summers of Observations

Author:

Luo Huiying12ORCID,Lu Cheng‐Hsuan13ORCID

Affiliation:

1. Atmospheric Sciences Research Center University at Albany State University of New York Albany NY USA

2. Now at Colorado State University Fort Collins CO USA

3. Joint Center for Satellite Data Assimilation University Corporation for Atmospheric Research Boulder CO USA

Abstract

AbstractElevated surface ozone levels are often detected in the New York metropolitan area during summertime. Moreover, surface ozone in this region exhibits sharp spatial gradients and distinctive diurnal cycles under the influence of complex boundary layer circulations induced by the intricate coastal geometry. This study examines how surface ozone is impacted by local circulations spatially and temporally under different temperature scenarios (all summer days, hot summer days, and extreme heat days) with the help of cluster‐based meteorological conditions during the summertime of 2017–2019. The most polluted days are found to be highly associated with hot sea breeze days with weak background flow. When sea breeze development in the New York Bight is delayed and its penetration north is intercepted by the dominant westerlies during hot summer days, daily maximum 8‐hr average ozone (DMA8) in some ozone hot spots of New York City (NYC) and the south shore of Connecticut (CT) typically drops 9–10 ppb under comparable temperature levels. The average regional decrease of DMA8 for NYC and coastal CT is 6.7 and 8.3 ppb, respectively. Furthermore, we conclude that a change in early morning meridional wind direction is the most critical meteorological characteristic in controlling sea breeze onset type and helping modulate ozone exceedances in the region during extreme hot days when ozone exceedances are expected to be very common. The conclusion is further demonstrated with two case studies during the Long Island Sound Tropospheric Ozone Study 2018 field campaign.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3