Summertime Airborne Measurements of Ammonia Emissions From Cattle Feedlots and Dairies in Northeastern Colorado

Author:

Juncosa Calahorrano Julieta F.1ORCID,Pollack Ilana B.1ORCID,Sullivan Amy P.1,Roscioli J. Robert2,Caulton Dana R.3ORCID,McCabe Megan E.3ORCID,Li En1ORCID,Pierce Jeffrey R.1ORCID,Fischer Emily V.1ORCID

Affiliation:

1. Department of Atmospheric Science Colorado State University Fort Collins CO USA

2. Aerodyne Research Inc. Billerica MA USA

3. Department of Atmospheric Science University of Wyoming Laramie WY USA

Abstract

AbstractPhase One of the Transportation and Transformation of Ammonia (TRANS2Am) field campaign took place in northeastern Colorado during the summer of 2021. One of the goals of TRANS2Am was to measure ammonia (NH3) emissions from cattle feedlots and dairies. Most of these animal husbandry facilities are co‐located within oil and gas development, an important source of methane (CH4) and ethane (C2H6) in the region. Phase One of TRANS2Am included 12 near‐source research flights. We present estimates of NH3 emissions ratios with respect to CH4 (NH3 EmR), with and without correction of CH4 from oil and gas, for 29 feedlots and dairies in the region. The data shows larger emissions ratios than previously reported in the literature with a large range of values (i.e., 0.1–2.6 ppbv ppbv−1). Facilities housing cattle and dairy had a mean (std) of 1.20 (0.63) and 0.29 (0.08) ppbv ppbv−1, respectively. We also found that only 15% of the total ammonia (NHx) is in the particle phase (i.e., ) near major sources during the warm summertime months. We examined the evolution of NH3 in one plume that was sampled at different distances and altitudes up to 25 km downwind and estimated the NH3 lifetime against deposition and partitioning to the particle phase to be 87–120 min. Finally, we calculated estimates of NH3 emission rates from four optimally sampled facilities. These ranged from 4 to 29 g NH3 · h−1 · hd−1.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3