Influences of Lateral Boundary Forcings on the 2020 Extreme Meiyu in the Yangtze‐Huaihe River Valley

Author:

Zhu Xiaoyu1ORCID,Hu Yijia1ORCID,Sun Xuguang2ORCID,Zhong Zhong34ORCID,Ha Yao1ORCID,Li Yunying1ORCID

Affiliation:

1. College of Meteorology and Oceanography National University of Defense Technology Changsha China

2. School of Atmospheric Sciences Nanjing University Nanjing China

3. Key Laboratory for Virtual Geographic Environment School of Geography Science Nanjing Normal University Nanjing China

4. Jiangsu Collaborative Innovation Center for Climate Change School of Atmospheric Sciences Nanjing University Nanjing China

Abstract

AbstractMeiyu occurs in Yangtze‐Huaihe River valley (YHRV) every summer. Its intensity, distribution, and intraseasonal variation are greatly influenced by atmospheric forcings from different directions, such as the monsoon southwesterlies from the south, the western Pacific subtropical high (WPSH) in the east, the atmospheric longwave activities in the north, the southwest vortex from the west, and so on. In this study, to explore the contributions of the atmospheric forcings from different directions to 2020 extreme Meiyu, Regional Climate Model version 4.6 (RegCM4.6) is employed. A series of sensitivity experiments are conducted with realistic or climatological averaged lateral boundary conditions. The results show that the monsoon westerlies from the south transport moisture and heat to YHRV, converge with the cold air brought by the frequent atmospheric longwave activities in the north, and result in this extreme Meiyu. The frequent cold air from the north can lift warm air, provide unstable conditions, and make the distribution of precipitation similar to the teleconnection pattern in East Asia. The stable WPSH in the east anchors the 2020 Meiyu rainband to the YHTV for a long time. In addition, the contributions of the atmospheric forcings from different directions to evolution of 2020 Meiyu change with time. Before 10 June, the WPSH in the east mainly contributes to the Meiyu evolution. From 11 June to 3 July, the combined effects of atmospheric forcings from the south and north are dominant. From 3 July to 10 July, the cold air from the north plays a major role.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3