Present‐Day Regional Antarctic Sea Ice Response to Extratropical Cyclones

Author:

Ward Jamie L.12ORCID,Payne Ashley E.13ORCID,Pettersen C.1ORCID

Affiliation:

1. Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA

2. Cooperative Institute for Great Lakes Research University of Michigan Ann Arbor MI USA

3. Tomorrow.io The Tomorrow Companies Inc. Boston MA USA

Abstract

AbstractBoth atmospheric warming and poleward moisture transport increase the likelihood of sea ice surface melt. In the Southern Hemisphere, short‐lived extratropical cyclones (ETCs) are responsible for a bulk of total heat and moisture transport toward high latitudes. Although these storms form ubiquitously in the midlatitudes, moisture availability and temperature characteristics vary by source region. In this study, we assess atmospheric, oceanic, and sea ice concentration (SIC) anomalies associated with austral winter ETCs over different Antarctic regions using ERA5 reanalysis data. Between 1990 and 2019, we find a total of 514 ETCs, with greater storm frequency in the eastern hemisphere groups. Compared to the climatology, sea ice melts (grows) behind the warm (cold) front of each system and is negatively correlated with atmospheric poleward moisture transport, temperature, meridional winds, and sea surface temperature for all ETCs. We find that Bellingshausen storms move moisture and warm air furthest poleward over their lifespan. However, East Weddell and East Antarctic ETCs are responsible for greater absolute poleward moisture transport than Bellingshausen and Ross systems. More intense ETCs correspond to greater SIC through Day 1, suggesting that SIC impacts ETC strength, regardless of ETC region. From cyclogenesis to cyclolysis, sea ice extent declines underneath composite ETCs, trends are generally not significant. Overall, while sea ice response produced by ETC‐induced atmospheric and oceanic changes varies regionally, the long‐term impacts of ETCs on regional sea ice are negligible over the study period.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3