Transition of the Sun to a Regime of High Activity: Implications for the Earth Climate and Role of Atmospheric Chemistry

Author:

Shapiro Anna V.1ORCID,Egorova Tatiana A.2,Shapiro Alexander I.1,Arsenovic Pavle3,Rozanov Eugene V.24ORCID,Gizon Laurent156

Affiliation:

1. Max Planck Institute for Solar System Research (MPS) Göttingen Germany

2. Physikalisch‐Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC) Davos Switzerland

3. Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences Vienna Austria

4. IAC ETHZ Zurich Switzerland

5. Institute for Astrophysics, Georg‐August‐Universität Göttingen Göttingen Germany

6. Center for Space Science, NYUAD Institute, New York University Abu Dhabi Abu Dhabi UAE

Abstract

AbstractIt was recently suggested that the Sun could switch to a high‐activity regime which would lead to a rise of ultraviolet radiation with an amplitude of about four times larger than the amplitude of an average solar activity cycle and a simultaneous drop in total solar irradiance. Here, we applied the SOCOLv3‐MPIOM model with an interacting ocean to simulate the response of chemistry, dynamics, and temperature of Earth's atmosphere to such a change in solar irradiance. We studied the effect of high activity regime on the atmosphere investigating the influence of the chemical and radiative processes on the climate, and chemistry of NOx, HOx, and O3. We find a climate cooling by up to 1K and a substantial increase in stratospheric ozone (up to 14%) and total ozone (up to 8%). To understand the role of the different processes we performed simulations with two sets of forcing accounting separately for the influence on chemical processes and for direct radiation energy balance. Our calculations show that the stratospheric O3 response is almost fully driven by the chemical processes. We also found that the direct radiation processes lead to near‐surface cooling that results in the suppression of the Brewer‐Dobson circulation. This, in turn, leads to the reduction of H2O influx from the low layers of the troposphere and to less intensive transport of ozone from the tropics to the middle latitudes. The surface climate response is dominated by direct radiation influence with only a small contribution from chemical processes.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3