Long‐Term Alpine Precipitation Reconstruction (LAPrec): A Gridded Monthly Data Set Dating Back to 1871

Author:

Isotta F. A.1ORCID,Chimani B.2ORCID,Hiebl J.3ORCID,Frei C.1ORCID

Affiliation:

1. Federal Office of Meteorology and Climatology MeteoSwiss Zurich Switzerland

2. GeoSphere Austria Vienna Austria

3. Consultant of GeoSphere Austria Aschbach‐Markt Austria

Abstract

AbstractSpatial climate data sets that extend back in time over many decades are an important resource for climate monitoring. The long‐term consistency of such data sets is, however, compromised by changes in the measurement systems over time. In this paper, we introduce a data set of monthly precipitation on a 5‐km grid over the European Alps that extends back to the late 19th century. In deriving the “long‐term Alpine precipitation reconstruction” (LAPrec), special care is taken of variations in the station network, in order for the data set to satisfy high standards in long‐term consistency. LAPrec builds on a reconstruction method that integrates the available information in two portions: The first is a set of high‐quality homogenized station series, taken from the HISTALP data archive, covering the entire period almost continuously. The second is a high‐resolution gridded precipitation analysis, taken from the “Alpine Precipitation Grid Data Set,” constructed from thousands of rain‐gauges but covering a few decades only. We demonstrate how the reconstruction approach successfully introduces mesoscale structures that are not resolved by the available long‐term station series, more plausibly so than a predecessor data set using conventional interpolation. We also illustrate that LAPrec reveals long‐term precipitation trends that are spatially more consistent and more detailed than the trends in popular climate monitoring data sets. Over the period 1871–2017 a statistically significant increase is found in winter over the northern parts of the Alps (1%–2% per 10 years). LAPrec is available in two versions (back until 1871 and 1901 respectively) from the Copernicus climate data store.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3