Time‐Resolved Measurements of PM2.5 Chemical Composition and Brown Carbon Absorption in Nanjing, East China: Diurnal Variations and Organic Tracer‐Based PMF Analysis

Author:

Feng Wei1,Wang Xinyue1,Shao Zhijuan2,Liao Hong1ORCID,Wang Yuhang3ORCID,Xie Mingjie1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Collaborative Innovation Center of Atmospheric Environment and Equipment Technology School of Environmental Science and Engineering Nanjing University of Information Science & Technology Nanjing China

2. School of Environment Science and Engineering Suzhou University of Science and Technology Shihu Campus Suzhou China

3. School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA USA

Abstract

AbstractTo understand diurnal variations in PM2.5 composition and aerosol extract absorption, PM2.5 samples were collected at intervals of 2 hr from 8:00 to 20:00 and 6 hr from 20:00 to 8:00 (the next day) in northern Nanjing, China, during the winter and summer of 2019–2020 and analyzed for bulk components, organic tracers, and light absorption of water and methanol extracts—a proxy measure of brown carbon (BrC). Diurnal patterns of measured species reflected the influences of primary emissions and atmospheric processes. Light absorption coefficients of water (Abs365,w) and methanol extracts (Abs365,m) at 365 nm shared a similar diurnal profile peaking at 18:00–20:00, generally following changes in biomass burning tracers. However, Abs365,w, Abs365,m, and their normalizations to organic aerosols increased at 14:00–16:00, earlier than that of levoglucosan in the late afternoon, which was attributed to secondarily formed BrC. The methanol extracts showed a less drastic decrease in light absorption at night than the water extracts and elevated absorption efficiency during 2:00–8:00. This is due to the fact that the water‐insoluble OC has a longer lifetime and stronger light absorption than the water‐soluble OC. According to the source apportionment results solved by positive matrix factorization (PMF), biomass burning and secondary formation were the major BrC sources in northern Nanjing, with an average total relative contribution of about 90%. Compared to previous studies, diurnal source cycles were added to the PMF simulations in this work by using time‐resolved speciation data, which avoided misclassification of BrC sources.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3