The Contrast Precipitation Patterns in Yangtze River Valley Between the Two La Niña Decaying Summers in 2021 and 2022

Author:

Yuan Shuai1,Sun Xuguang1ORCID,Zhang Xinyou1ORCID,Xu Shiqi1ORCID,Yang Xiu‐Qun1ORCID

Affiliation:

1. China Meteorological Administration Key Laboratory for Climate Prediction Studies School of Atmospheric Sciences Institute for Climate and Global Change Research Nanjing University Nanjing China

Abstract

AbstractAlthough the summers of 2021 and 2022 are both in the two successive La Niña decaying stages and under the same climate background of negative Pacific Decadal Oscillation (PDO) phase and global warming trend, they exhibit significantly different and even opposite precipitation patterns in the Yangtze River Valley (YRV) as well as in the Indian monsoon region (IMR). In contrast to the abundant precipitation and lower temperature in the YRV in summer 2021, in summer 2022 the YRV experiences severe drought and extremely high temperatures, which is also accompanied by Mega‐floods in the IMR. This study identifies the joint influence of sea surface temperature anomalies (SSTAs) in Niño4 and Barents Sea (BS) regions as the underlying cause for the contrast YRV precipitation anomalies in the summers of 2021 and 2022. Specifically, the cold SSTAs in both Niño4 and BS regions in summer 2021 favor stronger and southward shifted western North Pacific subtropical high (WNPSH), leading to more precipitation in the YRV, which is however generally reversed but more intense in summer 2022 because of the synergistic effect of cold Niño4 and warm BS SSTAs. Moreover, the induced extreme precipitation in the IMR in summer 2022, which is absent in summer 2021 due to the offsetting effect of cold SSTAs in both Niño4 and BS regions, in turn further strengthens the anomalous atmospheric circulations via its released large diabatic heating and serves as a relay pathway for the dramatic drought and heat wave in the YRV.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3