Impacts of Drop Clustering and Entrainment‐Mixing on Mixed Phase Shallow Cloud Properties Over the Southern Ocean: Results From SOCRATES

Author:

D’Alessandro John J.123ORCID,McFarquhar Greg M.12ORCID

Affiliation:

1. Cooperative Institute for Severe and High Impact Weather Research and Operations University of Oklahoma Norman OK USA

2. School of Meteorology University of Oklahoma Norman OK USA

3. Now at Department of Atmospheric Sciences University of Washington Seattle WA USA

Abstract

AbstractEntrainment and associated mixing (i.e., entrainment‐mixing) have been shown to impact drop size distributions. However, most past studies have focused on warm clouds and have not considered the impacts on mixed phase clouds (i.e., those containing liquid and ice particles). This study characterizes the impacts of entrainment‐mixing on mixed phase cloud properties over the Southern Ocean using in situ observations. By taking advantage of strong correlations between droplet clustering and entrainment‐mixing, a clustering metric is used as a proxy to assess the degree of mixing. This maximizes the available sample size for a statistical analysis of entrainment‐mixing impacts on mixed phase properties. A positive relationship is found between the magnitude of droplet clustering and large ice concentrations (those with maximum dimensions greater than ∼300 μm), suggesting entrainment‐mixing enhances the Wegener‐Bergeron‐Findeisen (WBF) process. Particle size distributions are averaged over different ranges of liquid (liquid water content (LWC)) to total water content (TWC) ratio. Since the ratio is expected to transition from 1 to 0 during glaciation, differences in the distributions provide insight into the relation of entrainment‐mixing to mixed phase cloud evolution. Mixed phase samples with the greatest large ice concentrations occur at LWC/TWC < 0.4 in low clustering regions. However, these samples are relatively few, whereas high clustering regions have a greater frequency of samples with LWC/TWC < 0.4. This suggests sublimation/vapor sinks associated with entrainment can counteract the enhanced WBF. In high clustering regions, distributions of small droplets are relatively constant and large droplets (>30 μm) are preferentially removed as LWC/TWC transitions from 1 to 0.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3