Affiliation:
1. Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA USA
2. Department of Aerospace, Physics and Space Sciences Florida Institute of Technology Melbourne FL USA
3. Department of Environment and Technology Magdeburg‐Stendal University of Applied Sciences Magdeburg Germany
4. College of Science and Engineering at American University of Armenia Yerevan Armenia
Abstract
AbstractThe role of free passage distance (FPD: the distance between the avalanche region and surface detectors) in influencing the relative numbers of energetic electrons and gamma rays in Thunderstorm Ground Enhancements (TGEs) is reconsidered and focuses on the contrast between long (>100 m) versus short (<100 m) FPDs, respectively. Estimates of FPD are based on information from published balloon soundings of the electric field, from published profiles of radar reflectivity in TGEs, and from analyses of Japan winter storms. All these data sources support typical values of FPD >100 m. Neither the shortcomings of present particle detectors in distinguishing electrons from gamma rays, nor the dominance of gamma rays over electrons, are sufficient evidence to deny the robust presence of Compton electrons at FDP values greater than 100 m that have also been shown in earlier simulations as well as the present Comment. Problems with having sustained electric fields of breakeven magnitude within 100 m of the Earth's surface (in relatively rare TGEs) are identified. The resolution of these problems, and the prominent nocturnal presence of these rare events, may possibly be explained by the descent of a strong field region in a collapsing storm, and by a low cloud base that intercepts and immobilizes fast corona ions, thereby preserving the intense electric field.
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献