Examining Atmospheric River Life Cycles in East Antarctica

Author:

Wille Jonathan D.12ORCID,Pohl Benjamin3ORCID,Favier Vincent1ORCID,Winters Andrew C.4ORCID,Baiman Rebecca4ORCID,Cavallo Steven M.5ORCID,Leroy‐Dos Santos Christophe6ORCID,Clem Kyle7ORCID,Udy Danielle G.89ORCID,Vance Tessa R.9,Gorodetskaya Irina10,Codron Francis11,Berchet Antoine6ORCID

Affiliation:

1. Institut des Géosciences de l'Environnement CNRS/UGA/IRD/G‐INP Saint Martin d'Hères France

2. Institute for Atmospheric and Climate Science ETH Zurich Zurich Switzerland

3. Biogéosciences CNRS / Université de Bourgogne Franche‐Comté Dijon France

4. Department of Atmospheric and Oceanic Sciences University of Colorado Boulder Boulder CO USA

5. School of Meteorology University of Oklahoma Norman OK USA

6. Laboratoire des Sciences du Climat et de l'Environnement Gif‐Sur‐Yvette France

7. School of Geography Environment and Earth Sciences Victoria University of Wellington Wellington New Zealand

8. Institute for Marine & Antarctic Studies University of Tasmania Hobart TAS Australia

9. Australian Antarctic Program Partnership Institute for Marine & Antarctic Studies University of Tasmania Hobart TAS Australia

10. CIIMAR—Interdisciplinary Centre of Marine and Environmental Research of the University of Porto Matosinhos Portugal

11. Laboratoire d'Océanographie et du Climat LOCEAN‐IPSL Sorbonne Université CNRS IRD MNHN Paris France

Abstract

AbstractDuring atmospheric river (AR) landfalls on the Antarctic ice sheet, the high waviness of the circumpolar polar jet stream allows for subtropical air masses to be advected toward the Antarctic coastline. These rare but high‐impact AR events are highly consequential for the Antarctic mass balance; yet little is known about the various atmospheric dynamical components determining their life cycle. By using an AR detection algorithm to retrieve AR landfalls at Dumont d'Urville and non‐AR analogs based on 700 hPa geopotential height, we examined what makes AR landfalls unique and studied the complete life cycle of ARs reaching Dumont d'Urville. ARs form in the mid‐latitudes/subtropics in areas of high surface evaporation, likely in response to tropical deep convection anomalies. These convection anomalies likely lead to Rossby wave trains that help amplify the upper‐tropospheric flow pattern. As the AR approaches Antarctica, condensation of isentropically lifted moisture causes latent heat release that—in conjunction with poleward warm air advection—induces geopotential height rises and anticyclonic upper‐level potential vorticity tendencies downstream. As evidenced by a blocking index, these tendencies lead to enhanced ridging/blocking that persist beyond the AR landfall time, sustaining warm air advection onto the ice sheet. Finally, we demonstrate a connection between tropopause polar vortices and mid‐latitude cyclogenesis in an AR case study. Overall, the non‐AR analogs reveal that the amplified jet pattern observed during AR landfalls is a result of enhanced poleward moisture transport and associated diabatic heating which is likely impossible to replicate without strong moisture transport.

Funder

Agence Nationale de la Recherche

Marsden Fund

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3