CLASP: CLustering of Atmospheric Satellite Products and Its Applications in Feature Detection of Atmospheric Trace Gases

Author:

Lee Tabitha1ORCID,Wang Yuxuan1ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences University of Houston Houston TX USA

Abstract

AbstractSatellite instruments have the most potential of capturing trace gas variability as they continually observe the atmosphere and its composition over wide regions. Yet the increasingly large data size of satellite products poses a challenge for their use as traditional data processing methods (e.g., averaging) may not be effective to extract the spatiotemporal variability without prior knowledge of an emission source's spatial and temporal behavior, such as location, time, and plume shape. Here, an agile clustering algorithm entitled CLustering of Atmospheric Satellite Products (CLASP) is presented to identify the spatiotemporal variability of trace gases captured in satellite observations. We find the knowledge discovery method for large data sets, clustering, is suited for identifying the variability of trace gases in satellite observations, as such CLASP is rooted in density‐based clustering methods. CLASP detects features from satellite observations and identifies their spatial, magnitude, and temporal axis leading to a better understanding of the spatiotemporal variability of atmospheric trace gases. To test the applicability of CLASP, the algorithm is applied to TROPOspheric Monitoring Instrument NO2 observations illustrating some of its different capabilities. Implementing CLASP for event identification, capturing plume variability, and source detection, CLASP identified wildfires, observed disruptions from COVID‐19 lockdown restrictions, and detected irregular emissions from oil and gas operations.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3