Mesospheric Water Vapor From SABER as a Tracer for the Residual Mean Circulation During SSW Events

Author:

Zhang Jiarong1ORCID,Oberheide Jens1ORCID,Pedatella Nicholas M.2ORCID,Koushik Neelakantan3ORCID

Affiliation:

1. Department of Physics and Astronomy Clemson University Clemson SC USA

2. High Altitude Observatory National Center for Atmospheric Research Boulder CO USA

3. Space Physics Laboratory Vikram Sarabhai Space Centre Thiruvananthapuram India

Abstract

AbstractThe sparse wind observations and reanalysis winds in the mesosphere make it challenging to accurately determine the residual mean meridional circulation (MMC). As winds distribute tracers, an alternative approach is to utilize long‐lived trace species such as water vapor (H2O). The recently released H2O data from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) version 2.07, combined with simulations by the Whole Atmosphere Community Climate Model eXtension with specified dynamics (SD‐WACCM‐X) and with the Data Assimilation Research Testbed (WACCMX + DART), provide an opportunity to assess the accuracy of using H2O isopleths to derive the vertical component of the residual MMC during the 2009 sudden stratospheric warming (SSW) event. In winter, the impact of photochemistry and diffusion on the distribution of mesospheric H2O is negligible compared to advective processes. H2O poleward of 70°N accurately captures the anomalous ascent that occurs a few days prior to the onset of the SSW and the subsequent descent. The derived vertical velocity in SD‐WACCM‐X and WACCMX + DART is qualitatively consistent with SABER observations. However, the derivation of vertical motion from isopleth analysis has limitations at the beginning of 2009 when the meridional transport is stronger than the vertical transport. While measuring winds in the mesosphere is challenging, satellite observations of mesospheric H2O prove to be an effective dynamical tracer during time periods characterized by strong vertical coupling.

Funder

NASA

National Center for Atmospheric Research

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3