Impacts of North Atlantic Model Biases on Natural Decadal Climate Variability

Author:

Huo Wenjuan1ORCID,Drews Annika2ORCID,Martin Torge1ORCID,Wahl Sebastian1ORCID

Affiliation:

1. GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany

2. National Center for Climate Research Danish Meteorological Institute Copenhagen Denmark

Abstract

AbstractIncreasing the horizontal resolution of an ocean model is frequently seen as a way to reduce the model biases in the North Atlantic, but we are often limited by computational resources. Here, a two‐way nested ocean model configuration (VIKING10) that consists of a high‐resolution (1/10°) component and covers the northern North Atlantic, is embedded in a 1/2° ocean grid as part of the global chemistry‐climate model, FOCI (called FOCI‐VIKING10). This configuration yields a significantly improved path of the North Atlantic current (NAC), which here reduces the North Atlantic cold bias by ∼50%. Compared with the coarse‐resolution, non‐eddying model, the improved thermal state of upper ocean layers and surface heat fluxes in a historical simulation based on FOCI‐VIKING10 are beneficial for simulating the subdecadal North Atlantic Oscillation (NAO) variability (i.e., a period of 8 years). A northward drift of the NAO‐forced ocean thermal anomalies as seen in observations and the eddying FOCI‐VIKING10, provide a lagged ocean feedback to the NAO via changes in the net surface heat flux, leading to the NAO periodicity of 8 years. This lagged feedback and the 8 years variability of the NAO cannot be captured by the non‐eddying standard FOCI historical simulation. Furthermore, the argumentative responses of the North Atlantic to the 11‐year solar cycle are re‐examined in this study. The reported solar‐induced NAO‐like responses are confirmed in the 9‐member ensemble mean based on FOCI but with low robustness among individual members. A lagged NAO‐like response is only found in the nested eddying simulation but absent from the non‐eddying reference simulation, suggesting North Atlantic biases importantly limit climate model capability to realistically solar imprints in North Atlantic climate.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3