Significant Impact of Reactive Chlorine on Complex Air Pollution Over the Yangtze River Delta Region, China

Author:

Yi Xin1,Sarwar Golam2,Bian Jinting1,Huang Ling1ORCID,Li Qinyi34ORCID,Jiang Sen1,Liu Hanqing1,Wang Yangjun1,Chen Hui1ORCID,Wang Tao4,Chen Jianmin5ORCID,Saiz‐Lopez Alfonso3ORCID,Wong David C.2,Li Li1ORCID

Affiliation:

1. Key Laboratory of Organic Compound Pollution Control Engineering (MOE) School of Environmental and Chemical Engineering Shanghai University Shanghai China

2. Center for Environmental Measurement & Modeling U.S. Environmental Protection Agency Research Triangle Park NC USA

3. Department of Atmospheric Chemistry and Climate Institute of Physical Chemistry Blas Cabrera CSIC Madrid Spain

4. Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong China

5. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention Department of Environmental Science & Engineering Fudan University Shanghai China

Abstract

AbstractThe chlorine radical (Cl) plays a crucial role in the formation of secondary air pollutants by determining the total atmospheric oxidative capacity (AOC). However, there are still large discrepancies among studies on chlorine chemistry, mainly due to uncertainties from three aspects: (a) Anthropogenic emissions of reactive chlorine species from disinfectant usage are typically overlooked. (b) The heterogeneous reaction uptake coefficients used in air quality models resulted in certain differences. (c) The co‐effect of anthropogenic and natural emissions is rarely investigated. In this study, the Weather Research and Forecasting (WRF)‐Community Multiscale Air Quality (CMAQ) modeling system (updated with 21 new reactions and a comprehensive emissions inventory) was used to simulate the combined impact of chlorine emissions on the air quality of a coastal city cluster in the Yangtze River Delta (YRD) region. The results indicate that the new emissions of reactive chlorine and the updated gas‐phase and heterogeneous chlorine chemistry can significantly enhance the AOC by 21.3%, 8.7%, 43.3%, and 58.7% in spring, summer, autumn, and winter, respectively. This is more evident in inland areas with high Cl concentrations. Our updates to the chlorine chemistry also increases the monthly mean maximum daily 8‐hr average (MDA 8) O3 mixing ratio by 4.1–7.0 ppbv in different seasons. Additionally, chlorine chemistry promotes the formation of fine particulate matter (PM2.5), with maximum monthly average enhancements of 4.7–13.3 μg/m3 in different seasons. This study underlines the significance of adding full chlorine emissions and updating chlorine chemistry in air quality models, and demonstrates that chlorine chemistry may significantly impact air quality over coastal regions.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3