Uncertainty Quantification for the Noah‐MP Land Surface Model: A Case Study in a Grassland and Sandy Soil Region

Author:

Wang Heng1,Huo Xueli2ORCID,Duan Qingyun3ORCID,Liu Rui1,Luo Shiwei1

Affiliation:

1. Chongqing Key Laboratory of GIS Application Research School of Geography and Tourism Chongqing Normal University Chongqing China

2. Department of Atmospheric Sciences University of Utah UT Salt Lake City USA

3. The National Key Laboratory of Water Disaster Prevention College of Hydrology and Water Resources Hohai University Nanjing China

Abstract

AbstractLand surface models rely on a multitude of parameters to simulate land‐atmosphere interactions, but the parameter uncertainty can limit the reliability of model predictions. This study utilizes a parameter uncertainty quantification (UQ) framework to quantify and reduce the parameter uncertainty of the Noah‐MP land surface model in a grassland and sandy soil region in the Midwest of the USA. First, the sparse polynomial chaos expansion method which can quantify the interaction effect of parameters, is employed. A relatively small parameter sample size (i.e., 20 times of the number of parameters) was sufficient to identify the sensitive parameters; an additional sensitive parameter, the saturated soil hydraulic conductivity, was screened out compared to previous study. Then, based on the selected sensitive parameters, the weighted multi‐objective adaptive surrogate modeling‐based optimization algorithm is used as the parameter optimization method. The optimization results showed that the root mean square error of flux of latent heat (FLH) on about 82% of the total grids was reduced, and the number was about 57% for gross primary production (GPP) compared to the results using the original parameter settings, indicating that the Pareto parameter set by the UQ framework improved the Noah‐MP model in simulating FLH and GPP in a grassland and sandy soil region in the Midwest of the USA.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing Municipality

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3