Detecting Extreme Temperature Events Using Gaussian Mixture Models

Author:

Paçal Aytaç12ORCID,Hassler Birgit1ORCID,Weigel Katja12ORCID,Kurnaz M. Levent3ORCID,Wehner Michael F.4ORCID,Eyring Veronika12ORCID

Affiliation:

1. Deutsches Zentrum für Luft‐ und Raumfahrt (DLR) Institut für Physik der Atmosphäre Oberpfaffenhofen Germany

2. University of Bremen Institute of Environmental Physics (IUP) Bremen Germany

3. Center for Climate Change and Policy Studies Boğaziçi University Istanbul Turkey

4. Computational Research Division Lawrence Berkeley National Laboratory Berkeley CA USA

Abstract

AbstractExtreme temperature events have traditionally been detected assuming a unimodal distribution of temperature data. We found that surface temperature data can be described more accurately with a multimodal rather than a unimodal distribution. Here, we applied Gaussian Mixture Models (GMM) to daily near‐surface maximum air temperature data from the historical and future Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations for 46 land regions defined by the Intergovernmental Panel on Climate Change. Using the multimodal distribution, we found that temperature extremes, defined based on daily data in the warmest mode of the GMM distributions, are getting more frequent in all regions. Globally, a 10‐year extreme temperature event relative to 1985–2014 conditions will occur 13.6 times more frequently in the future under 3.0°C of global warming levels (GWL). The frequency increase can be even higher in tropical regions, such that 10‐year extreme temperature events will occur almost twice a week. Additionally, we analyzed the change in future temperature distributions under different GWL and found that the hot temperatures are increasing faster than cold temperatures in low latitudes, while the cold temperatures are increasing faster than the hot temperatures in high latitudes. The smallest changes in temperature distribution can be found in tropical regions, where the annual temperature range is small. Our method captures the differences in geographical regions and shows that the frequency of extreme events will be even higher than reported in previous studies.

Funder

European Research Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3