Northern Hemisphere Snow Drought in Earth System Model Simulations and ERA5‐Land Data in 1980–2014

Author:

Fang Yilin1ORCID,Leung L. Ruby2ORCID

Affiliation:

1. Earth Systems Science Division Pacific Northwest National Laboratory Richland WA USA

2. Atmospheric Science & Global Change Division Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractLow snow levels over the past few decades and predictions of a low‐to‐no snow future have spurred research into snow droughts, which pose a threat to water security and management. Systematic data‐model comparisons of snow drought have been lacking, hindering our understanding of the drivers of snow drought in the past. To address this gap, we analyzed snow drought events using standardized snow water equivalent index derived from monthly results of four numerical experiments using the E3SM Land Model (ELM) and ERA5‐Land data during the period of 1980–2014. Additionally, we compared snow drought duration calculated from models with those from the ERA5‐Land data during selected El Niño‐Southern Oscillation (ENSO) years. The numerical experiments were conducted with ELM driven by two prescribed atmospheric forcings, and with the coupled land‐atmosphere configuration of E3SM with and without plant hydraulics scheme feedback. Analysis reveals that 20%–30% of snow droughts occur due to factors other than above‐normal temperature and low snowfall, such as low soil moisture, warm soil temperature, and low relative humidity, etc., especially in high latitudes (50° North). Furthermore, our study highlights the exacerbating effect of ENSO events on snow drought conditions in various regions, despite some discrepancies between model and ERA5‐Land results. We also identified limitations of the coupled land‐atmosphere models in our current configuration in capturing the spatial patterns of snow droughts. This study underscores the challenge of predicting and mitigating snow drought and the need for a comprehensive understanding of the factors contributing to snow drought.

Funder

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3