Climate Change in the Thermosphere and Ionosphere From the Early Twentieth Century to Early Twenty‐First Century Simulated by the Whole Atmosphere Community Climate Model—eXtended

Author:

McInerney Joseph M.1ORCID,Qian Liying1ORCID,Liu Han‐Li1ORCID,Solomon Stanley C.1ORCID,Nossal Susan M.2ORCID

Affiliation:

1. High Altitude Observatory National Center for Atmospheric Research Boulder CO USA

2. Department of Physics University of Wisconsin Madison WI USA

Abstract

AbstractMotivated by numerous lower atmosphere climate model hindcast simulations, we performed simulations of the Earth's atmosphere from the surface up through the thermosphere‐ionosphere to reveal for the first time the century scale changes in the upper atmosphere from the 1920s through the 2010s using the Whole Atmosphere Community Climate Model—eXtended (WACCM‐X v. 2.1). We impose solar minimum conditions to get a clear indication of the effects of the long‐term forcing from greenhouse gas increases and changes of the Earth's magnetic field and to avoid the requirement for careful removal of the 11‐year solar cycle as in some previous studies using observations and models. These previous studies have shown greenhouse gas effects in the upper atmosphere but what has been missing is the time evolution with actual greenhouse gas increases throughout the last century, including the period of less than 5% increase prior to the space age and the transition to the over 25% increase in the latter half of the 20th century. Neutral temperature, density, and ionosphere changes are close to those reported in previous studies. Also, we find high correlation between the continuous carbon dioxide rate of change over this past century and that of temperature in the thermosphere and the ionosphere, attributed to the shorter adjustment time of the upper atmosphere to greenhouse gas changes relative to the longer time in the lower atmosphere. Consequently, WACCM‐X future scenario projections can provide valuable insight in the entire atmosphere of future greenhouse gas effects and mitigation efforts.

Funder

National Science Foundation

National Center for Atmospheric Research

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3