Printed Dual‐Frequency Directional Antenna Loaded With Dual‐Parasitic Strip

Author:

Kittiyanpunya Chainarong1ORCID,Chomdee Pongsathorn2ORCID

Affiliation:

1. Department of Mechatronics Engineering Faculty of Engineering Rajamangala University of Technology Rattanakosin Salaya Thailand

2. Department of Technology Urban Community Development College Navamindradhiraj University Bangkok Thailand

Abstract

AbstractIn this paper, the directional antenna is developed to construct the printed dual‐frequency directional antenna for a 1‐GHz/2.3‐GHz dual‐frequency sensor application. An auxiliary dipole element generating the higher resonant mode is set on a primary dipole element introducing the lower resonant mode. The feed balance is also designed to cover the desired frequency between two resonance frequencies, which is based on the microstrip line (MS) to coplanar stripline (CPS) transition. To realize the directional antenna, two reflector elements are utilized, and one of them is a stepped‐width reflector on reducing the size of the antenna. In addition, the parasitic strip works as the lumped element used to obtain good impedance matching. A series of simulations are performed on the MS‐to‐CPS transition, the dual dipole element, the reflectors, and the parasitic strip to determine the optimal antenna design. A prototype is fabricated based on the optimal results of the simulation. Concerning the measured results, the proposed antenna has well unidirectional radiations, good radiation efficiencies, and low cross‐polarization levels at any operating frequencies.

Publisher

American Geophysical Union (AGU)

Subject

Electrical and Electronic Engineering,General Earth and Planetary Sciences,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Open microstrip resonant ring sensor for measuring density-independent moisture content of rapeseed;Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024);2024-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3