Sediment Compaction in Experimental Deltas: Toward a Meso‐Scale Understanding of Coastal Subsidence Patterns

Author:

Zapp Samuel M.12ORCID,Sanks Kelly M.13ORCID,Silvestre Jose3ORCID,Shaw John B.1ORCID,Dutt Ripul3,Straub Kyle M.3ORCID

Affiliation:

1. Department of Geosciences University of Arkansas Fayetteville AR USA

2. Department of Oceanography and Coastal Science Louisiana State University Baton Rouge LA USA

3. Department of Earth and Environmental Sciences Tulane University New Orleans LA USA

Abstract

AbstractWe present the first investigation of subsidence due to sediment compaction and consolidation in two laboratory‐scale river delta experiments. Spatial and temporal trends in subsidence rates in the experimental setting may elucidate behavior which cannot be directly observed at sufficiently long timescales, except for in reduced scale models such as the ones studied. We compare subsidence between a control experiment using steady boundary conditions, and an otherwise identical experiment which has been treated with a proxy for highly compressible marsh deposits. Both experiments have non‐negligible compactional subsidence rates across the delta‐top, comparable in magnitude to our boundary condition relative sea level rise rate of 250 μm/hr. Subsidence in the control experiment (on average 54 μm/hr) is concentrated in the lowest elevation (<10 mm above sea level) areas near the coast and is likely related to creep induced by a rising water table near the shoreface. The treatment experiment exhibits larger (on average 126 μm/hr) and more spatially variable subsidence rates controlled mostly by compaction of recent marsh deposits within one channel depth (∼10 mm) of the sediment surface. These rates compare favorably with field and modeling based subsidence measurements both in relative magnitude and location. We find that subsidence “hot spots” may be relatively ephemeral on longer timescales, but average subsidence across the entire delta can be variable even at our shortest measurement window. This suggests that subsidence rates over a short time frame may exceed thresholds for marsh platform drowning, even if the long term trend does not.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3